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ABSTRACT 

The Poincar6 duality of classical cohomology and the extension of this 
duality to quantum cohomology endows these rings with the structure of a 
Frobenius algebra. Any such algebra possesses a canonical "characteristic 
element;" in the classical case this is the Euler class, and in the quantum 
case this is a deformation of the classical Euler class which we call the 
"quantum Euler class." We prove that the characteristic element of a 
Frobenius algebra A is a unit if and only if A is semisimple, and then apply 
this result to the cases of the quantum cohomology of the finite complex 
Grassmannians, and to the quantum cohomology of hypersurfaces. In 
addition we show that, in the case of the Grassmannians, the [quantum] 
Euler class equals, as [quantum] cohomology element and up to sign, the 
determinant of the Hessian of the [quantum] Landau-Ginzbug potential. 

1. I n t r o d u c t i o n  

In [22], W i t t e n ' s  s t u d y  of  ins tan tons  in the  context  of s u p e r s y m m e t r y  of  sys t ems  

wi th  d e f o r m e d  Hami l t on i ans  gave rise to the  not ion  of a deformed cohomology  

ring. Th is  " q u a n t u m  cohomology  ring" has  since then  been  fo rmula ted  prec ise ly  

in t e rms  of G r o m o v - W i t t e n  invar iants  of symplec t ic  manifo lds  (see [13] for de-  

ta i ls) .  Necessari ly,  much of the  a t t en t ion  pa id  to  q u a n t u m  cohomology  has  been  

f rom the  po in t  of view of symplec t ic  geometry,  e.g. [16, 13]. The re  has  also been  

a g rea t  dea l  of n a t u r a l  in teres t  in the  rea lm of a lgebra ic  geometry ,  e.g. [11, 7]. 
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Nevertheless, there is strong motivation to pursue an approach which empha- 

sizes and investigates the parallels between classical and quantum cohomology. 

The quantum cohomology ring of a manifold M is additively essentially the same 

as the classical cohomology ring of M, but possesses a multiplication which is a 

deformation of the classical cup product (see §5). The strong analogy between 

the algebraic structures of these two rings is responsible for the fact that the Eu- 

ler class has a quantum analogue which we refer to as the "quantum Euler class," 

defined in §5 below. We show here that this element of the quantum cohomology 

ring carries with it information about the semisimplicity, or lack thereof, of the 

quantum cohomology ring. 

The issue of semisimplicity of quantum cohomology rings has already been 

under investigation from other points of view, as in [9, 11]. In [9], Dubrovin 

defines a F r o b e n i u s  man i fo ld  M to be a manifold such that each fiber of the 

tangent bundle T M  has a Frobenius algebra structure, which varies "nicely" 

from fiber to fiber. This context allows for a close investigation of the nature of 

the quantum deformations of classical cohomology, which is generally realized as 

ToM, the tangent plane at "the origin" in M. Moreover, the fact that  M is a 

Frobenius manifold is equivalent to the existence of a "Gromov-Witten potential" 

on M satisfying various differential equations, including the "WDVV" equations 

[9, p. 133]. A Frobenius manifold is called "semisimple" if for a generic point 

t E M, the Frobenius algebra TtM is semisimple. In this case, a variety of 

additional results relating to the classification of Frobenius manifolds hold [9, 

Lecture 3]. 

The general structure and content of this article are as follows: The exposi- 

tory presentation of classical cohomology in §2 highlights the algebraic structures 

which are generalized and deformed in §§3-7. In particular, we offer a new canon- 

ical description of the Euler class e. The approach of §2 is extended to the general 

case of Frobenius algebras in §3, where the generalized analogue of the Euler class 

- -  "the characteristic element" - -  is shown to satisfy the following: 

T H E O R E M  3 . 4 :  The characteristic element of a Frobenius a/gebra A is a unit if 

and only if A is semisimple. 

Strictly speaking, quantum cohomology should be viewed as a ring extension, 

and not as having coefficients in a field. Section 4 provides the algebraic frame- 

work necessary to generalize the material of §3 to the case of a Frobenius exten- 

sion, i.e. when~ the base ring is not a field. This having been done, §5 sketches the 

elements of the definition of quantum cohomology, emphasizing its structure as a 

deformation of classical cohomology, and in particular as a Frobenius extension. 
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The "quantum Euler class" eq, which is a deformation of e, is defined here to be 

the characteristic element of the Frobenius extension structure of the quantum 

cohomology ring. Utilizing the material in §4, the semisimplicity test 3.4 can be 

applied to quantum cohomology rings. 

In the classical and quantum cohomology rings of the complex Grassmannians, 

the Euler class and quantum Euler class take on additional significance. Section 

6 outlines how these rings can be described as Jacobian algebras, where the ideal 

of relations is generated by the partial derivatives of the appropriate Landau-  

Ginzburg potential W (W a in the quantum case). In this context we prove the 

following result: 

THEOREM 6.1: The classical and quantum Euler classes are equal, up to sign, 
to the determinants of the Hessians of W and Wq, respectively. 

This connects the classicM and quantum Euler classes to Morse-theoretic con- 

siderations regarding the functions W and Wq. In a sense, it brings them back 

to the roots of quantum cohomology in [22], which utilizes a Morse-theoretic ap- 

proach. In addition, this result leads to a new proof of Proposition 6.5 which, 

modulo technicalities, states that the quantum cohomology of any finite complex 

Grassmannian manifold is semisimple. 

Finally, §7 applies the semisimplicity test 3.4 to the quantum cohomology of 

hyperplanes, providing good contrast to the situation for the Grassmannians. 

2. Classical c o h o m o l o g y  and the  Euler class 

Let X denote a connected K-oriented n-dimensional compact manifold, where n 

is even. Throughout  this article, except where noted otherwise, homology and 

cohomology groups will use coefficients in a field K of characteristic 0. We note 

that  H*(X) admits a Z/2Z-grading (even degree elements versus odd degree 

elements). Because of this the general results of this paper, which are formulated 

for commutative algebras, will apply to H* (X). In the case of the Grassmannians, 

our main application here, the cohomology is concentrated in even dimensions 

and is therefore commutative. 

Denote by [X] E H,~(X) the fundamental orientation class of X, and let 

( - , - ) :  H*(X) ® H. (X)  --+ K denote the Kronecker index. The kernel of the 

linear form #*: H*(X) ~ K ,  where # denotes the generator of H'~(X) satisfying 

(#, IX]) = 1, contains no nontrivial ideals. This form can be used to define the 

"intersection form" H*(X)@ H*(X) ~ K, by a@b ~-~ tt*(aUb). The intersection 

form is nondegenerate. 



338 L. A B R A M S  Isr. J. Math .  

Notice that  we may view H,  (X) as a (left) H* (X)-module via the cap product  

N: H*(X) @ H,(X) --+ H,(X). Viewing H*(X) as the regular (left) module over 

itself, we see that the Poincar6 duality map 

D: H*(X) --+ H,(X), ¢ ~ ( - , ¢ N  [X]) 

is an H*(X)-module  isomorphism. 

Let A: X --+ X x X denote the diagonal map. The transfer map A!: H*(X) --+ 
H*(X) @ H*(X) is defined to be the map which makes the following diagram 

commutative: 

H*(X) a' > H*(X) @ H*(X) 

ol o oo l 
H,(X) a. H,(X) ® H,(X) 

Here, we implicitly use the isomorphism H,(X × X) ~- H,(X) ® H , ( X ) ,  and the 

corresponding isomorphism for cohomology. Modulo this latter isomorphism, the 

cup-product in H*(X) is given by A*: H*(X) ® H*(X) --~ H*(X). 
Let j :  (X x X, 0) --+ (X x X, X x X \ A(X)) denote inclusion of pairs. Consider 

the element ~- := A ! (1) = ( 0  -1 ® 0 -1) o A,  (IX]). By the canonical isomorphism 

of the tangent bundle T X  to the normal bundle of A(X)  in X × X [15], this is just 

the image under j* of the Thorn class of TX.  It follows that  A* o A!(1) E H*(X) 
is in fact the Euler class e(X). 

We recall the well known formula [15] 

i 

where ei ranges over a basis for H* (X), and ej # ranges over the corresponding 

dual basis relative to the intersection form, i.e. #*(e~ U ej #) = 6~j. 

3. Frobenius algebras and the characteristic element 

Let K be a field of characteristic 0 and let A be a finite-dimensional (as a vector 

space) commutative algebra over K,  with unity 1A. Let fl: A ® A ~ A denote 

multiplication in A, and let/~: A ~ End(A) denote the regular representation of 

A, i.e. /3(a) is "multiplication by a." View A as the regular module over itself, 

and view the vector space dual A* as an A-module via the action A ® A* --4 A* 

given by a @ ~ ~ a .  ( :-- ~ o/~(a). 

A is referred to as a F r o b e n i u s  a l g e b r a  if there exists an A-module iso- 

morphism A: A --> A*, i.e. a nondegenerate pairing. In [8, pages 414-418] the 
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existence of such an isomorphism is shown to be equivalent to the existence of 

a linear form f :  A --+ K whose kernel contains no nontrivial ideals, and to the 

existence of a nondegenerate linear form ~/: A @ A -+ K which is associative, i.e. 

~(ab®c) = 71(a®bc). In fact, we may take f := A(1A) and ~/:= f o i l ,  and we will 

henceforth presume that  A, f and ~ are related in this way. When it is useful to 

emphasize the Frobenius algebra structure of A endowed by particular f ,  ~, and 

A, the algebra A will be denoted by (A, f ) .  

For the next result, view A ® A as an A-module via the usual module action 

f l®I :  A ® A ® A - +  A ® A .  

THEOREM 3.1: A finite-dimensional commutative algebra A with 1A is a Frobe- 

nius algebra i f  and only i f  it has a cocommutative comultiplication a: A ~ A@A, 

with a counit, which is a map of A-modules. 

Proof'. A complete proof appears in [1]. Here, we simply note that  if A is a 

Frobenius algebra with pairing A, then the comultiplication a is defined to be 

the map(A - I ® A  -1) of l*oA:  

A '~ • A ® A  

A 1 T A-I®A-I 

A* ~*• A*®A* 

Define the c h a r a c t e r i s t i c  e l e m e n t  o f  (A, f )  to be the element a)A, f : :  

j3 o a(1A) E A. This canonical element is shown in [1] to be of the form 

OJA,f = ~ eie~, 
i 

where e~ ranges over a basis for A and e~ ranges over the corresponding dual 

basis relative to ~/. 

It is easy to show that  Theorem 3.1 still holds if "commutative" is replaced by 

"skew-commutative," as would be the case for H*(X) .  We see that  in that  case 

f ,  A, a,  w correspond to #*, D, A !, e(X), respectively. 

Given Frobenius algebras (A, f )  and (B,g),  we can form the d i r e c t  s u m  

(A ~9 B, f @ g), where A ~ B denotes the "orthogonal direct sum" of algebras, 

and f @ g acts by f @ g(a @ b) := f (a)  + g(b) E g .  The pair (A @ B, f ~ g) is in 

fact a Frobenius algebra [1]. 

PROPOSITION 3.2: [1] The characteristic element respects direct sum structure. 

Specifically, 

O)A,~A, , , f ,~ f , ,  z O.)A,,f, ~ t..OA,,,f,, E A' ~ Att. 
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The  minimal  essential ideal S = S(A)  of an Art inian ring A is called the soc le .  

W h e n  A is indecomposable,  the socle is ann(N) ,  where Af = Af(A) c A is the 

ideal of nilpotents.  See [3, §9] for details. 

PROPOSITION 3.3: In a Frobenius algebra A, the ideal wA is the socle of A. 

This  result is independent  of the choice of Frobenius algebra structure.  

The  construct ion in the following proof is essentially taken from SaTin [17], 

a l though this result does not explicitly appear  there. 

Proof." Because the socle of a finite-dimensional commutat ive  algebra is the 

direct sum of the socles of its indecomposable consti tuents [3, §9], it suffices to 

prove this proposi t ion for the indecomposable cases. Furthermore,  we showed 

in [1] tha t  the socle S of a Frobenius algebra is a principal ideal, any of whose 

nonzero elements is a generator,  so it suffices to show tha t  w lies in the socle. 

Notice tha t  w is not  0; we have f (w) = (A : K)  E K,  and this is not 0 in K,  since 

K has characterist ic  0. 

If  A is a field extension then Af(A) = {0}, so the socle S = a n n ( X )  = A. But  

w is not  zero, so it is a unit, and thus wA = A = S. 

If  A is not  a field extension, define a chain of ideals S = S1 C $2 C . . -  C Sn = 

A, where each Sk is the pre-image in A of the socle of A/Sk-x .  Choose a basis for 

$1. Now, s tar t ing with i -- 1, iteratively take the basis for Si and extend it to  a 

basis for Si+l.  Denote  the elements of the basis for S~ = A by e l , . . . ,  e,~, and let 

e ~ , . . . ,  e#m denote  the corresponding dual basis elements. Suppose ei E Sk \ Sk-1 

and tha t  a E A is any nilpotent  element. Then  aei E Sk-1, and therefore can be 

expressed as a linear combinat ion of basis elements other than  ei. I t  follows tha t  

f(aeiei #) = 0, so ele~Af(A) C K e r f .  But  Ker f can contain no nontrivial  ideals, 

as ment ioned above, so we must  have eiei#Af(A) = 0, i.e. eie~ E S. This follows 

for each i, so w = ~ i  eie/~ C S. | 

THEOREM 3.4: The characteristic element w of a Frobenius algebra A is a unit 

i f  and only if  A is semisimple. 

Proof: First,  recall from the proof  of 3.3 tha t  w is not 0. Because A is com- 

mutat ive,  it is semisimple if and only if it is a direct sum of fields. In such a 

case, the component  of w in each component  of A is nonzero (each component  is 

a Frobenius algebra [1]), and hence a unit. Since a direct sum of units  is a unit ,  

w is a unit. 

I f  some component  A ~ of A is not a field, then it contains nontrivial  nilpotents.  

In  this case, S (A ' )  = ann(Af(A'))  is nilpotent, so w has a nilpotent component ,  
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and cannot be a unit. | 

In a skew-commutative context, such as H*(X), the characteristic element is 

not necessarily nonzero. For instance, if X is an odd-dimensional compact ori- 

ented manifold then the characteristic element, i.e. the Euler class, is 0. However, 

if the characteristic element is in fact nonzero, then 3.4 still holds. 

4. F r o b e n i u s  ex t ens ions  

Suppose A I R  is a commutative ring extension with identity which is free of finite 

rank. By analogy with Frobenius algebras, if there exists a module isomorphism 

A: A -+ A*, we call A a F r o b e n i u s  ex tens ion .  As in the case of Frobenius 

algebras, this is equivalent to the existence of maps z] and a. There is also a 

"Frobenius extension form" f := A(1A): A --+ R, but in this context it is not 

sufficient for the kernel of f to contain no nontrivial ideals. The characteristic 

element WA,f may be defined as for Frobenius algebras, but note that Theorem 

3.4 no longer applies. This section provides an approach for dealing with this 

circumstance. 

Suppose 0: R --~ S is a surjective homomorphism of rings (sending 1R ~ 1S). 

Let (A, f )  denote a Frobenius extension, and define B = O.(A) to be A ®R S. 

In this ring, we have ra ® s = a ® O(r)s for all r E R,s  C S, and a E A. Let 

~): A -+ B denote the ring homomorphism a ~-~ a ® ls .  Define the linear form 

f : B ~ S b y  

f ( a ® s )  := Oo f (a ) s .  

The form f is well-defined, since 

f ( r a  ® s) = 0 o f ( r a ) s  ---- O(r f (a) )s  = O(r)(O o f ( a ) ) s  = f ( a  N O(r)s), 

and f satisfies the commutative diagram 

A , B  l'0t' 
R > S  

Let e l , . . . ,  en denote a basis for A, and let e/#, . . . ,  e~ # denote the corresponding 

dual basis relative to ~?A- 

PROPOSITION 4.1: The  form f endows B = O.(A) wi th  a Frobenius extension 

s tructure,  and 

~B, i  = O(~A,S ). 
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Proo~ I t  suffices to show tha t  the set ( 0 ( e l ) , . . . ,  t~(en)} is a basis for B,  and t ha t  

its dual  basis  relative to the form B ® B  --4 S, aQb ~ f (ab)  is { tg (e~) , . . . ,  0(e~)}.  

T h e  existence of a dual  basis will show B is a Frobenius extension. The  par t icular  

form of the  basis and dual basis, together  with the fact tha t  0 is a homomorph i sm,  

will prove the  claim abou t  WB, ]. 

We first prove the or thogonal i ty  relations: 

To prove t ha t  we have a basis as claimed, note tha t  the elements  0 ( e l ) , . . . ,  0(en) 

clearly span  B,  since 0 is surjective. Suppose tha t  for some {si} c S we have 

~--:~i si~)(ei) --- 0. Then,  for all j ,  

1 

I t  follows tha t  ~)(el) , . . . ,~)(en) are independent ,  and thus form a basis. T h e  

or thogona l i ty  relat ions show tha t  (0(e l#) , . . .  ,~7(e~)} is a basis as well. i 

In the  next  result,  let 0: R -+ K be any surjective K- l inear  ring homomorph i sm,  

where  K is a field. 

PROPOSITION 4.2: The  element  ~dA, f is either a unit in A or a zero divisor. 

(i) I f  WA,f is a unit  in A,  then B = O.(A) is semisimple.  

(ii) I f  wA,i  is a zero divisor and ann (wAj )  ~ Ker0 ,  then O.(A) is not  semi-  

simple.  

Proof: If  wA,/ is a unit,  then  there  exists a u E A such tha t  ~OA,fU : 1A. But  

then,  by 4.1 

 B,zO(u) = O( A,S)O(u) =  (1A) = 18,  

so WB,f is a uni t  as well. 

All Frobenius  extension s t ructures  on A are given by (A, f o ~(u)) ,  for some 

unit  u E A [1, Propos i t ion  2, muta t i s  mutandis]. Thus,  if w is not a uni t  in A, 

then  the  m a p  wA,I • f is not a Frobenius extension form. This  implies t ha t  there  

exists an a C A such tha t  f ( w A , f a A )  --- W A , f "  f ( a A )  -- {0}. But  f is a Frobenius  

extension form, so it must  be  t ha t  UsAja = O. If  follows tha t  O(¢OA,f)O(a) -~ O. 

Since, by assumpt ion ,  there  exists some a • ann(wA,f)  such tha t  a ~ Ker0 ,  we 

see t h a t  O(wA,I) = wB, f  is a zero divisor as well. Both  s t a t ements  (i) and  (ii) 

now follow from T h e o r e m  3.4. II 
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5. Q u a n t u m  c o h o m o l o g y  a n d  t h e  q u a n t u m  E u l e r  class  

Let X be a 2n-dimensional compact oriented manifold which, in addition, is 

symplectic, and let H~(X) denote the quotient of H2(X,Z)  by its torsion sub- 

group. For the sake of this paper, assume that  H~(X) is of rank one and that  

cl(X) is positive. Taking B1 to denote a generator of H~(X), the group algebra 

A := K[H~.(X)] may be expressed as g[qB1], where q is a formal variable and 

the addition of exponents is the group operation of H~(X). This is essentially 

an algebraic version of the Novikov ring (see [13, §9.2]). (For a more general 

t rea tment  of the algebraic Novikov ring, where X is assumed to be projective, 

but no assumption is made on H~(X) nor on c l (X) ,  see [10].) 

As an additive group, the q u a n t u m  c o h o m o l o g y  ring QH* (X) has the same 

structure as H* ( X ) ®  A, but has a "deformed" multiplication, which we describe 

briefly: 

The classical cup product  of two elements a, b E H* (X) is given by 

a u b = Z ( o , .  
i 

where ci runs over a basis for H* (X) and a,/3 are the Poincar~ duals of a, b, 

respectively, "~i is the vector space dual of ci, and "." denotes the homology 

intersection index. The quantum multiplication 

• : QH*(X) @ QH*(X) -+ QH*(X) 

is defined on elements a,b E H*(X) ~-~ QH*(X) by 

a * b := ~ dPB(Ol,/3,"yi)qBci, 
i,B 

and extended by linearity to all of QH*(X). Here, B ranges over H~.(X), and 

(I)B(a,/3, "7i)denotes the Gromov (Gromov-Wit ten)  invariants. Intuitively, these 

count intersections (subject to dimension requirements!) of the cells a,/3, Ti not 

with themselves, but with the fourth cell B. When B = 0, the Gromov invariant 

is the classical intersection index. Thus, 

a * b = a U b + other terms. 

The dimensior~ requirements of * are such that,  with our assumptions, q may be 

viewed as having degree 2Cl (B~). For details regarding the definition of quantum 

cohomology, and in particular proofs of the associativity of *, see [13, 16]. 

Extend #*: H*(X) --+ K (defined in §2) by linearity over A to a form #*: 

QH*(X) -~ A. 
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PROPOSITION 5.1: The form it* endows QH*(X) with a Frobenius extension 
structure. 

Proof: We provide here a sketch; see [2] for a full proof. 

Choose a basis {e~} for H* (X) consisting of elements which are homogenous in 

degree. The matrix [77] having i, j ' t h  entry equal to #*(eiUej) is the matrix for the 

classical Poincar~ pairing, and has determinant +1. Note that if [e~[ + Icy] ~ 2n 

then [r/]/j = 0, so in particular [ei[< 2n - [ e j [  implies [?)]ij • O. 
Let ~: H* (X) ~ QH*(X) denote the obvious inclusion map. Then {~(ei)} is a 

basis for QH*(X).  The matrix [r/q] for the bilinear form associated with #* and 

• has i , j ' t h  entry equal to tt* (~(e~) * ~(ej)). A straightforward degree argument 

and the definition of * shows that I~(ei)] < 2 n -  ]~(ej)] implies [r/q]ij -- [r/]ij. 

By standard results in linear algebra on block matrices, this shows that the 

determinant of [r/q] is the same as that of [r/I, and is therefore a unit. | 

Note that  although H*(X) and QH*(X) share essentially the same basis {ei} 

and the same Frobenius algebra form, the respective dual bases are not necessarily 

equal. In other words, the fact that the element e~ # is the dual in H*(X)  to ei 

does not necessarily imply that ~(e/#) is dual to L(ei) in QH*(X).  However, it 

does hold that  the q0 term of ~(e/) # is in fact ~(e/#). It follows that  the q0 term of 

the characteristic element w e of (QH*(X), #*) is e(X). In other words, we have: 

The characteristic element Wq is a deformation of the classical Euler class. 

Because of this, we refer to wq as the q u a n t u m  E u l e r  class, and denote it by 

eq(X). Unlike e(X), the quantum Euler class may very well be a unit. Strictly 

speaking, however, the semisimplicity result 3.4 does not apply to QH* (X) be- 

cause A is not a field and QH*(X) is infinite dimensional (as a vector space) 

over K.  We may, however, utilize the approach of §4. Define the homomorphism 

0: A -+ K as follows: For each generator B / o f  H~(X) choose any nonzero ri E K 

and define 0(q B~) := ri. Extending 0 by linearity over K gives a surjective ring 

homomorphism, often referred to as "specialization." Theorem 3.4 now applies 

to O.[QH*(X)], which is a Frobenius algebra. 

6. The quantum c o h o m o l o g y  o f  the Grassmannians 

Let Gk,,~ denote the Grassmannian manifold of complex k-dimensional subspaces 

in C ~. Define the Chern polynomial of X = G~,,~ to be 

k k 

ct(G ,n) := x , t i=  l-I(1 + xit), 
i=1 i=1 
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where t is a formal variable and the xi's are the Chern classes of the canonical 

bundle Sk,~. The Ai are referred to as the C h e r n  r o o t s  of Gk,~ (but they are 

not roots of ct!). Obviously, xi is the i ' th elementary symmetric polynomial 

a i (A i , . . . ,  Ak) in the Chern roots. Define 

k _A_I W(hl, ,hk)=E 
"" n + l  

i----1 

and 
k 

1 A,~+ i 
Wq(A , , . . . , .Xk )=En+ I i +(--1)kqAi 

i=1 

= W ( A i , . . . ,  Ak) + (--1)kqzi. 

The function Wq is called the Landau-Ginzburg potential of Gk,n. Because W 

and Wq are symmetric functions in the Ai, they may also be viewed as functions 

of X l , . . . ,  xk. Define dW to be the ideal (OW/Oxl,..., OW/Oxk), and define dWq 
similarly. Then 

g*(Gk,,~) ~ g[xi , . . .  ,xkl/dW 

and 

QH*(Gk,n) ~- K[q, q-1][xi,..., xk]/dWq. 

Denote by H and He the determinants of the Hessians 

7-{ = ~ OXi~X j , 7-~q = ~ OXiOX j 

of W and Wq, respectively. 

In this section, we will prove the following: 

THEOREM 6.1: e(Gk,,J = ( -1 ) (~ )H  and eq(Gk,n) = (-1)(~)Hq. 

Suppose that  an algebra A (not necessarily a Frobenius algebra) is finite dimen- 

sional as a vector space and is given by the presentation A ~ K[xl , . . .  ,x~]/R, 
where R = ( f i , . - . ,  fp) is some finitely-generated ideal in K[xi, . . .  ,xn]. Note 

that  we continue to assume that  K has characteristic 0. Because A is finite di- 

mensional, we must have p > n. The J a c o b i a n  ideal  J = J(R) of R is defined 

to be the ideal generated by the determinants of the n × n minors of the matrix 

O ( f l , . . . ,  fp) 
0--~i: :-;x,---)) m°dR" 

The ideal J is well-defined since it is a Fitting ideal of the module f~A/K of K~hler 

differentials of A (see [21, §1.1, §10.3]). 
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The following result of Scheja and Storch [18] is reported in more generality 

in [21, ibid] (although for the definition of "complete intersection" we refer the 

reader to [12]): 

PROPOSITION 6.2: J ~ {0} if and only if  A is a complete intersection and J 

generates the socle of A. 

Now assume that A -~ K [ x l , . . . ,  Xn]/R is a Frobenius algebra with character- 

istic element w for some choice of Frobenius algebra structure. 

PROPOSITION 6.3: J ~ {0} if  and only if  J = wA. If  p = n, then J ~ {0} i f  and 

only if  

det \ ~ x j ]  mod R = uw 

for some unit u E A. 

Proof: This proposition follows immediately from 3.3 and 6.2. II 

PROPOSITION 6.4: For each Gk,n there is a n C K such that H = ne(Gk,n) and 

Hq =  eq(Gk,n). 

Proof: Because H and e(Gk,n) are the q0 terms of Hq and eq(Gk,n), respectively, 

it suffices to prove the proposition for the quantum case. 

The polynomial Wq is homogeneous of degree 2(n + 1) [13, §8.4]. In other 

words, each summand of Wq has degree 2(n + 1) in QH*(Gk,n), where q is taken 

to have degree 2n. Also, [xil = 2i for each i. Thus, for fixed i , j  we have 

OxiOxj ] -- IWql - Ixil - txjl = IWqt - 2 i -  2j. 

A straightforward proof by induction on the size of minors of 7-/shows that  Hq 

is homogeneous of degree 2k(n - k). Of course, eq is also homogeneous of degree 

2k(n - k) since eq -- ~ i  eie~ #, where ei runs over a basis for H*(Gk,n), and since 

]ei#[ = 2 k ( n -  k) - lei]. 
Consider the algebra A :-- K[q][xl , . . . ,  xk]/dWq. By the definitions of Hq and 

eq, and the nature of the relations given by dWq, both Hq and eq may be viewed 

as elements of A. Now, the proof of 4.1 applies equally well to the algebra A, 

so it is a Frobenius extension, and eq is in fact the characteristic element of A. 

Proposition 6.3 shows that Hq = veq(Gk,,~) for some unit v E A. Of course, v 

may also be viewed as an element of QH*(Gk,n) which simply has no qi-terms 

with i < 0. 
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Write v = v'  + v" where v'  is homogeneous of degree 0, and v" contains no 

terms of degree 0. Since H a = v' e a +V" eq and both H a and v' e a are homogeneous 

of degree 2k(n - k), we see that  v"e a must also be homogeneous of this degree. 

By degree considerations, we must have v"e a = 0, and thus H a = v'eq. 

Write v' = ~ j > o V j q  j. Since v' is homogeneous of degree 0 a n d  IqJ[ - -  2jn, 

we see that  IVy[ = - 2 j n .  But v'  is an element of A, so we must have vj = 0 for 

j ¢ 0. Thus v'  may in fact be viewed as a degree 0 element in H*(Gk,n). In 

other words, v'  is an element n E K.  | 

Take K = li~ or C, and for any nonzero r E K let 0r denote a specialization 

homomorphism K[q,q -~] --+ K ,  q ~-~ r as above. In the following paragraph,  

any reference to QH*(Gk,n) or any element a therein should be interpreted as 

referring to (0r). [QH* (Gk,~)] and 0r (a), respectively. 

In this context, the relationship between the characteristic element and the 

Hessian provides e a(Gk,n) with a nontrivial geometric interpretation: Denote the 

critical points of W a by Z l , . . . ,  zj, and note that  H a may be viewed as a function 

K k --+ K ,  as may all the elements of QH*(Gk,,~). It is well known that,  for each 

j ,  Hq(zj) = 0 if and only if the critical point zj is degenerate [14]. Because the 

elements of QH* (Gk,n), viewed as functions, are completely determined by their 

values on the critical points of Wq, we see that  H (and hence eq(Gk,n)) is a unit 

in QH*(Gk,n) if and only if the critical points of Wq are all nondegenerate. 

This relationship between eq(Gk,~) and H also yields a new approach to the 

following known result [19]: 

PROPOSITION 6.5: For all Gk,n and all nonzero r G R, the algebra 

(0~), [QH* (Gk,,~)] is semisimple. 

The proof is based on calculations appearing in [5]. 

Proof: The Jacobian matr ix  V = (Oxi/O)~j) associated to the elementary 

symmetr ic  functions xi is a Vandermonde matrix, and has determinant  

Hi<j(Ai - Aj) ¢ 0. Let V ,  denote the gradient vector operator with respect 

to X l , . . . ,  xk, and let V~ denote the gradient operator with respect to ~ 1 , . . . ,  ,kk. 

Viewing the gradient operators as row. vectors, we have V , ( W q ) V  = V~(Wq). 

Let V,(Wq)~ denote the i ' th  entry of V,(Wq),  and let V/denote  the i ' th  row of 

V. Then the Hessian of Wq with respect to the A's is 

V ~ V ~ ( % )  =V~(V~(W~)V)  

+ 

i 
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Evaluating at the critical points of Wq (i.e. assuming Vx(Wq) = 0), and 

expressing everything in terms of the Ai's, we see that 

1 li=l i H = d e t  ( v T v A ( W q ) )  det(V -2) = nk V[k A~-I 
- 

Now, because Y is invertible, the relation Vx (Wq) = 0 is equivalent to V~(Wq) = 

0. In other words, for each i we have ~ = ( -1)k+lq  at the critical points of Wq. 
This implies that  

k k 

Xk H An-1 = I I  An : (--1)k(k+l)qk" 

i=l i=l 

Since q ~ 0, the numerator of H, and thus H itself, is nonzero at the critical 

point of Wq. It follows that H,  as an element of QH*(Gk,~), has an inverse, 

and therefore, by 6.4, so does eq(Gk,n). By Proposition 4.2, Or[Qg*(Gk,n)] is 

semisimple. | 

As discussed above, the Chern classes xl, . . . ,  Xk arising from the bundle Sk,n 

are the elementary symmetric polynomials in the Chern roots £ l , - . . , £ k .  An 

analogous situation holds for the "normal" classes y l , . . . ,  yn-k, which arise from 

the quotient bundle Qk,n. Define i t1 , . . . ,  #~-k to be the Chern roots correspond- 

ing to the formal polynomial 
n--k 

E y~t i. 
i=l 

Then for all i, we have y~ = a i (# l , . . . , p ,~ -k ) .  In fact, the )~i's and lti's are 

the first Chern classes of the line bundles in the splitting~ of Sk,n and Qk,n, 
respectively [6, §21]. Together with the well known bundle-isomorphism of the 

tangent bundle Tk,n ~ Sk,n* ®Qk,~, this fact allows us to write the characteristic 

classes ci(Tk,n) in terms of the x~'s and yi's: The Chern polynomial for Tk,~ is 

k(~-=k) 

E ci(Tk,n)ti ---- 1-[ (1 + (#J -- Ai)t), 
i=1 i,j 

where i and j are in the product range over possible indices [6, ibic~. In other 

words, for each i we have ci(Ta,n) = ai({#j - Ai}i,j). This shows that  each 

ci(Tk,n) is symmetric in the Ai's and the/zj ' s ,  and can therefore be written in 

terms of the xi 's and yj's. 
In particular, the Euler class e(Gk,,~) can be lifted to a polynomial 

P C K[xl,..., Xk, Yl,. • •, Yn-k] 
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or, using the relations between the xi's and yj's, to a polynomial 

P'  C K [ x l , . . . , x k ] .  

P '  is referred to as the "Euler polynomial." 

Ber t ram [5] has proven the following: 

PROPOSITION 6.6: For each (k ,n) ,  the Euler polynomial  P '  is a li f t ing of  

( -1)(~)Hq • QH*(Gk,n) .  

We can now prove Theorem 6.1. 

Proo f  of  Theorem 6.1: Proposition 6.4 shows that eq := eq(Gk,n) = t~Hq for 

some a • K.  Let ~: QH* (Gk,~) --+ H* (Gk,,~) denote the module homomorphism 

sending q ~+ 0. By definition, P '  is a lifting of e := e(Gk,~), so (by 6.6) we have 

K [ X l , . . .  , xk]  " K [ q , q - 1 ] [ X l , . . .  , xk]  P '  ) P '  

H*(Gk,n)  ( " QH*(Gk,,~) e(Gk,~) ( "  ( -1)(~)Hq 

where the vertical arrows are the canonical projection maps. Now 7C(eq) = e, by 

definition of the quantum multiplication , ,  so Proposition 6.4 shows that  

1) (~) ( ( 1 )  ( ~ ) )  ( ( 1 )  (~) ) ( -  2 e = Tr - : eq = Tr - : ~Sq  = t¢e, 

and thus • = ( -1 ) ( ; ) .  II 

7. Q u a n t u m  cohomology of h y p e r s u r f a c e s  

For the sake of contrast with the Grassmannians, this section provides another 

class of examples of a quantum cohomology ring, and determines which of these 

are semisimple. In [20], Tian and Xu discuss a more general class of examples 

along these lines from the point of view of a different notion of semisimplicity, as 

introduced by Kontsevich and Manin in [11]. 

Let X C CP  '~+~ be a smooth complete intersection of degree (d l , . . .  ,dr)  and 

dimension n > 2 satisfying n _> ~ ( d i  - 1) - 1. Let F denote the hyperplane class 

generating H2(X,Z) .  By the "primitive cohomology H n ( X ) o  of X" we mean 

H n ( X )  if n is odd, and the subspace of H n ( X )  orthogonal to F n/2 if n is even. 

Beauville shows in [4] (although he unnecessarily presumes q = 1) that  Q H *  ( X )  

is the algebra over K[q, q- l ]  generated by F and H'~(X)o, subject to the relations 

Fn + l dd l ~d~ ~ d - 1  = ' ' ' a  r t q 



350 L. ABRAMS Isr. J. Math. 

and, for all a, b E H'~(X)o, 

F a = 0  and ab= (a,b)l (F n - d  dl.. .dd~F d-2q). 

Here, (., .) denotes the classical intersection form a ® b ~-~ f (a  U b), where f := 

( r~)  * . 

PROPOSITION 7.1: Let X denote a hypersurface of degree d. For any nonzero r E 
K,  if d > 2 then (Or).[QH*(X)] is not semisimple. If  d = 2 then (O~).[QH*(X)] 

is semisimple. 

Proof." Denote (Hn(X)o : K) by R, and choose a basis e l , . . . ,  eR for H~(X)o . 
Together with the elements 1, F, F 2 , . . . ,  F ~, this provides a full vector-space basis 

for QH*(X).  Thus the characteristic element of (QH*(X), f )  is 

W ---- Fi['n-i + E eie# 
i = 0  i = 1  

R 
= ( n  + 1)r  n + -~ ( r  n - dara-2q). 

Notice tha t  if d > 2 then w is divisible by F, so we1 = 0 (for example). Since 

el ¢ Ke r0  (it is a basis element for any choice of coefficients!), Proposition 4.2 

shows that  (O~),[QH*(X)] is not semisimple for any choice of r e K.  

If d = 2 then we have 

w = (n + 1 + 1R)Fn - 2Rq, 

and thus Fco = 4(n + 1)qF. Order the basis for QH*(X) as follows: 

1,F, F2 , . . .  ,F ~, e l , . . .  ,eR. Then the matrix [fl(w)] corresponding to a; under 

the regular representation fl is 

- 2 R q  
4(n + 1)q 

4(n + 1)q 
0 

n + l + ~  

4 ( n +  1)q 

-2nq 0 

0 -2nq 

Since the determinant  of this matrix is a unit in K[q, q-l], we see that  w is a unit 

in QH*(X); by 4.2 this shows that  (O~).[QH*(X)] is semisimple for any choice 

of r. | 
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